
Ohm's Law

Aim of the experiment

Measuring the currents through different load resistors $R_{\rm L}$ as a function of the applied voltage

<u>Circuit</u>

Equipment and components

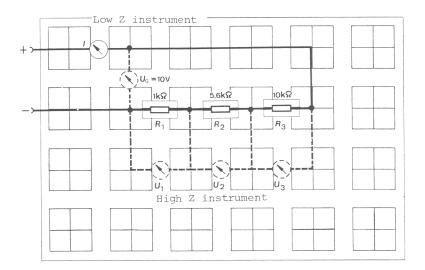
- 1 Rastered socket panel
- 1 Resistor $R_{L1},\,10~k\Omega$
- 1 Resistor $R_{L2},\,100\;k\Omega$
- 1 Resistor $R_{L3},\,470~k\Omega$
- 1 Low Z instrument
- 1 high Z instrument
- 1 D.C. power supply unit
- Bridging plugs
- Connecting leads

Conducting the experiment

- 1. Assemble the measuring circuit.
- Measure the current for three different resistors R_L as a function of the applied voltage (voltage steps of 1 V), and arrange the measured values in a table. Then draw a graph based on the measured values. Use a high Z instrument when measuring the current.
- 3. From the graph find the value of the resistor R_L .

U/V	I/mA			
	10 kΩ	100 kΩ	470 kΩ	

Slope =


 $R_L =$

Series Connection of Resistors

Aim of the experiment

Measurement of the total voltage U and the voltage drops U_1 , U_2 , and U_3 across the resistors and the current I flowing through the circuit.

Circuit

Equipment and components

1 Rastered socket panel

1 Resistor R_1 , 1 k Ω

1 Resistor R₂, 5.6 k Ω

1 Resistor R₃, 10 k Ω

1 Low Z instrument

1 high Z instrument

1 D.C. power supply unit

Bridging plugs

Connecting leads

Conducting the experiment

- 1. Assemble the circuit and connect a multi-meter in series for measurement of the current.
- 2. Adjust $U_G = 10$ V. Measure all voltages with the high Z instrument. Then measure, one after the other, the voltage drops U_1 , U_2 and U_3 across the corresponding resistors R_1 , R_2 and R_3 .

Total current $I_G =$

Voltage $U_G =$

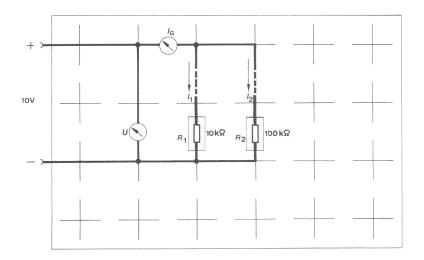
Resistor	Voltage
$R_1 = 1 k\Omega$	
$R_2 = 5.6 \text{ k}\Omega$	
$R_3 = 10 \text{ k}\Omega$	

Exercise

• Calculate the total resistance R_G from the law of series connection of resistors; $R_G = R_1 + R_2 + R_3$.

 $R_G =$

• Calculate the total voltage across the resistors $U_{total} = U_1 + U_2 + U_3$ and compare it with U_G .


 $U_{\text{total}} =$

Parallel Connection of Resistors

Aim of the experiment

Measurement of the current I and the voltage U in a circuit and a number of circuit variations.

<u>Circuit</u>

Equipment and components

- 1 Rastered socket panel
- 1 Resistor R_1 , 10 k Ω
- 1 Resistor R₂, 100 k Ω
- 1 Low Z instrument
- 1 high Z instrument
- 1 D.C. power supply unit
- Bridging plugs
- Connecting leads

Conducting the experiment

- 3. Assemble the circuit step by step (the single stages are indicated by dotted lines).
- 4. Measure the current I and the voltage U as given in the table below.

Circuit with	U/V	I/mA	R/kΩ
R ₁			
R ₂			
$R_G = \frac{R_1 \times R_2}{R_1 + R_2}$			

Exercise

- Enter the resistance values into the table for each of the circuits.
- Calculate the total resistance R_G of the circuit from the law of parallel

connection of resistors;
$$\frac{1}{R_G} = \frac{1}{R_1} + \frac{1}{R_2}$$
,
 $R_G = \frac{R_1 \times R_2}{R_1 + R_2}$

 $R_G =$

• Calculate the total current using 1^{st} law of Kirchhoff: $I_G = I_1 + I_2$.

 $I_G =$