Ohm's Law

Aim of the experiment

Measuring the currents through different load resistors R_{L} as a function of the applied voltage

Circuit

Equipment and components

1 Rastered socket panel
1 Resistor $\mathrm{R}_{\mathrm{L} 1}, 10 \mathrm{k} \Omega$
1 Resistor $\mathrm{R}_{\mathrm{L} 2}, 100 \mathrm{k} \Omega$
1 Resistor $\mathrm{R}_{\mathrm{L} 3}, 470 \mathrm{k} \Omega$
1 Low Z instrument
1 high Z instrument
1 D.C. power supply unit
Bridging plugs
Connecting leads

Conducting the experiment

1. Assemble the measuring circuit.
2. Measure the current for three different resistors R_{L} as a function of the applied voltage (voltage steps of 1 V), and arrange the measured values in a table. Then draw a graph based on the measured values. Use a high Z instrument when measuring the current.
3. From the graph find the value of the resistor R_{L}.

U / V	I / mA		
	$10 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$470 \mathrm{k} \Omega$

Slope $=$
$\mathrm{R}_{\mathrm{L}}=$

Series Connection of Resistors

Aim of the experiment

Measurement of the total voltage U and the voltage drops U_{1}, U_{2}, and U_{3} across the resistors and the current I flowing through the circuit.

Circuit

Equipment and components

1 Rastered socket panel
1 Resistor $\mathrm{R}_{1}, 1 \mathrm{k} \Omega$
1 Resistor $\mathrm{R}_{2}, 5.6 \mathrm{k} \Omega$
1 Resistor $\mathrm{R}_{3}, 10 \mathrm{k} \Omega$
1 Low Z instrument
1 high Z instrument
1 D.C. power supply unit
Bridging plugs
Connecting leads

Conducting the experiment

1. Assemble the circuit and connect a multi-meter in series for measurement of the current.
2. Adjust $\mathrm{U}_{\mathrm{G}}=10 \mathrm{~V}$. Measure all voltages with the high Z instrument. Then measure, one after the other, the voltage drops U_{1}, U_{2} and U_{3} across the corresponding resistors $\mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{3}.

Total current $\mathrm{I}_{\mathrm{G}}=$

Voltage $\mathrm{U}_{\mathrm{G}}=$

Resistor	Voltage
$\mathrm{R}_{1}=1 \mathrm{k} \Omega$	
$\mathrm{R}_{2}=5.6 \mathrm{k} \Omega$	
$\mathrm{R}_{3}=10 \mathrm{k} \Omega$	

Exercise

- Calculate the total resistance R_{G} from the law of series connection of resistors; $\mathrm{R}_{\mathrm{G}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$.
$\mathrm{R}_{\mathrm{G}}=$
- Calculate the total voltage across the resistors $\mathrm{U}_{\text {total }}=\mathrm{U}_{1}+\mathrm{U}_{2}+\mathrm{U}_{3}$ and compare it with U_{G}.
$\mathrm{U}_{\text {total }}=$

Parallel Connection of Resistors

Aim of the experiment

Measurement of the current I and the voltage U in a circuit and a number of circuit variations.

Circuit

Equipment and components

1 Rastered socket panel
1 Resistor $\mathrm{R}_{1}, 10 \mathrm{k} \Omega$
1 Resistor $\mathrm{R}_{2}, 100 \mathrm{k} \Omega$
1 Low Z instrument
1 high Z instrument
1 D.C. power supply unit
Bridging plugs
Connecting leads

Conducting the experiment

3. Assemble the circuit step by step (the single stages are indicated by dotted lines).
4. Measure the current I and the voltage U as given in the table below.

Circuit with	U / V	I / mA	$\mathrm{R} / \mathrm{k} \Omega$
R_{1}			
R_{2}			
$R_{G}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}$			

Exercise

- Enter the resistance values into the table for each of the circuits.
- Calculate the total resistance R_{G} of the circuit from the law of parallel connection of resistors; $\frac{1}{R_{G}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$,

$$
R_{G}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}
$$

$\mathrm{R}_{\mathrm{G}}=$

- Calculate the total current using $1^{\text {st }}$ law of Kirchhoff: $\mathrm{I}_{\mathrm{G}}=\mathrm{I}_{1}+\mathrm{I}_{2}$.
$\mathrm{I}_{\mathrm{G}}=$

